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Evaluation of Integrals over the 

Brillouin Zone by Houston’s Method 
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Baton Rouge, Louisiana 70803 

The weight factors for the Houston’s method of integration are presented up to 16 
terms. The results of Betts and Betts, Bhatia and Wyman contain a subtle error which 
is here pointed out and resolved. 

I. INTRODUCTION 

Integrals of the following type appear frequently in Solid State theory: 

z = F(a) d3% s (1) 
where q is a vector in the first Brillouin zone (IBZ) and the integration is taken 
over the entire volume of IBZ. The function F may be invariant under some or all 
operations of the cubic group Oh . A simple method for evaluating such integrals 
was given by Houston [l] in 1948. 

Such integrals (using Houston’s method) appear, for example, in the evaluation 
of Debye Temperatures [l-6], studies of specific heat [6,7], thermal expansion 
coefficients [8] and phonon spectra [7,9], comparison of de Haas-van Alphen data 
[lo] with band structure calculations and in the study of solid state scattering [l 11. 

Houston’s method of evaluating the integral in (1) is based on expanding the 
function F(q) in terms of the cubic harmonics of van der Lage and Bethe [12], i.e., 

and the orthogonality of the &‘s 
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where K1 , the first cubic harmonic (often referred to as K,,) is a constant and iVr 
is the normalization constant for K1 . 

To obtain a,(q), one evaluates the quantity F(q) in as many directions as the 
terms desired (for convergence) in the expansion on the right hand side of (2). 

For other integrals where F(q) is multiplied by a factor proportional to one of 
the cubic harmonics, we simply have moments of higher order and a,(q) is replaced 
by an appropriate aj(q) in (4). 

In the theory of solid state scattering [I 11, one encounters integrals similar 
to (1) but F(q) may not have the complete symmetry of the cubic group Oh . 
In such a case, we can use 

(5) 

where B goes over the operations of the cubic group. The partial symmetry of 
F(q) will reduce the fi sum to a smaller number of terms (than the 48 shown above). 

Houston [l] terminated the expansion in (2) with only three terms. That type 
of interpolation puts too much emphasis on the three directions used and the 
results are not accurate enough. To improve the accuracy, expansions have been 
made for 6 terms (Betts et al. [2]) and for 9 and 15 terms (Betts [3]). As we shall 
see later, these results contain subtle errors because all linearly independent 
combinations for a given I have not been included. 

Since Houston’s method replaces the IBZ by an equivalent sphere, there are 
errors introduced depending upon the discrepancy between the two. Corrections 
have been provided in terms of normalization factors [4, 51. 

In this paper, we evaluate the coefficient a,(q) for different number of directions 
(up to 16) for cases where better accuracy is desired. For a face-centered cubic 
lattice, the results are applicable with a constant normalization. For other cases, 
one can use the normalization constants of Ganesan and Srinivasan [4] suitably 
adjusted. 

2. GENERAL THEORY 

The cubic harmonics are suitable linear combinations of the spherical harmonics. 
There has been a considerable amount of work done [2, 10, 12-141 in evaluating 
these combinations, the most exhaustive being the work of Mueller and 
Priestley [lo]. 

The cubic harmonics can be written as [IO] 

(6> 
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where 

czm = -$ (Yz, + yz,-A (64 

czo = Y 10 9 (6b) 

and ai; are the expansion coefficients. The value of 1 depends on j while m takes 
on values 0,4, 8 ,..., mmax . mmaJr is the largest integer divisible by 4 and is < 1. 
The cubic harmonics thus defined are orthonormal over the unit sphere. The 
allowed values of 1 are even and I = 4 is the smallest value that gives rise to a 
combination with cubic symmetry (except 1 = 0 which gives a constant). The 
number of linearly independent combinations for a given 1 is given by the coeffi- 
cient of xzi2 in the expansion 

[(l - X2)(1 - x”)]-” = 1 + X2 + X3 + x4 + x5 + 2x6 + .** . (7) 

The first case of “degeneracy” appears when I= 12. There must be two combina- 
tions formed from 1 = 12. Since such a choice is not unique, when one terminates 
the expansion (2), it must be such that all independent combinations for a given 1 
are used. This fact is overlooked by Betts et al. [2] and Betts [3]. Table I gives the 
corresponding values of j and 1 (for 1 up to 30). For a given 1, one must use the 
largest value of j shown to invert (2). 

(A) Evaluation of aj’s 

To evaluate the coefficients aj(q) in (2) for a given value of q (magnitude of q), 
we rewrite (2) omitting the q dependence (for y1 terms) 

WJ, $4 = i aMA 4). 
j=l 

To evaluate aj’s, we choose n directions 8, , dS for s 
matrices Q and 9 such that 

Qii = KC4 3 6) 

and 

such that (8) becomes a matrix equation 

i = 1, 2 ,..., n, 

(8) 

1, 2,..., n and define the 
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TABLE I 

Values of 1 and m for Kr (j = 1 to 27) and the suggested directions up to j = 16. 

i I m Suggested direction” 

1 0 0 
2 4 094 
3 6 034 
4 8 0,4,8 
5 10 0,438 
6 12 0,4,8, 12 
7 12 0,4,8,12 
8 14 0,4,8,12 
9 16 0,4,8,12,16 

10 16 0,4,8,12, 16 
11 18 0,4,8,12,16 
12 18 0,4,8,12,16 
13 20 0,4,8, 12, 16,20 
14 20 0,4, 8, 12, 16,20 

.15 22 0,4,8, 12, 16,20 
16 22 0,4,8,12, 16,20 
17 24 0,4,8,12, 16,20,24 
18 24 0,4,8,12, 16,20,24 
19 24 0,4,8, 12,16,20,24 
20 26 0,4, 8, 12, 16,20,24 
21 26 0,4,8, 12,16,20,24 
22 28 0,4,8,12, 16,20,24,28 
23 28 0,4,8, 12, 16,20,24,28 
24 28 0,4,8,12, 16,20,24,28 
25 30 0,4,8,12, 16,20,24,28 
26 30 0,4,8,12, 16,20,24,28 
27 30 0,4, 8, 12,16,20,24,28 

<loo> 
<IlO> 
<Ill> 
(320 
(831) 
<210) 
<211> 
(441) 
(741) 
(411) 
(221) 
<410) 
<732> 
(651) 
<=I> 
(543) 

o Given only up to 16 terms. Minimum number of terms desirable in terminating the expansion 
in (2) is three. 

with the solution 

aj = f (Q-‘)ii s!& , j = 1) 2 )...) n. (lob) 
i=l 

Due to cubic symmetry, the directions in the unit sphere are equivalent to those 
in the 1148th segment with the bounding interior planes k, = 0, k, = k, and 
k, = k, . We should choose the directions (0, , C& in such a way that they are 
distributed evenly as far as possible over this segment (or any other equivalent 
segment) and are such that the evaluation of the integrand is simple. The three 
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directions often used are (IOO), (110) and (111). For larger II, the suggested direc- 
tions (based purely on distribution in this segment) are given in Table I and 
roughly shown as planar projections in Fig. 1. 

FIG. 1. Planar projections of the suggested directions. 

Table II gives the values of (Q-l)ji for the case of 12 = 5. Since K1 is a constant 
(equal to 1/(47r)‘12), the integral in (1) becomes 

I = (4~‘)~‘~ j” dq q2 ( iI (Q-‘hi &Cq,). (11) 

TABLE II 
The coefficients (Q-l),j for the five-term expansion and the corresponding directions 

i 

Directions (100) (110) <Ill> <321) (831) 
i for diff i 1 2 3 4 5 

1 0.23353051 0.32877823 0.31545227 1.56319692 1.10394979 
2 0.47199890 -0.19855325 -0.45511268 -0.98577917 1.16744620 
3 0.34336476 -0.95782087 0.50765313 0.43792425 -0.33112127 
4 0.45743050 0.66009805 0.27188482 -0.69197970 -0.69743367 
5 0.23224970 -0.32204923 -0.38440648 1.15943840 -0.68523240 

For cases of n up to 16, a, is given below in Eqs. (12a)-(12i) using the suggested 
directions: 

a?) = (1.012831)F(lOO) + (1.620529)F(llO) + (0.911548)10(111), 

a?’ = (0.607698)F(lOO) - (0.190062) F(110) - (0.303849)F(lll) 
+ (3.431121) F(321), 

(124 

Wb) 
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al”’ = (0.233531) F(lO0) + (0.328778) F(110) + (0.315452) F(ll1) 
+ (1.563197)F(321) + (l.l0395O)F(831), 

a?) = (0.213058) F(N) + (0.370902) F(ll0) + (0.323287) F(111) 
+ (1.534489)F(321) + (1.233336)F(831) - (O.l24902)F(210) 
- (0.0052625) F(21 l), 

a?’ = (0.221613)F(lOO) + (0.110091)F(110) + (0.294637)F(lll) 
+ (0.635562) F(321) + (1.083847) F(831) + (0.137543) F(210) 
+ (0.474521) F(211) + (0.587092) F(441), 

al (lo) = (0.189198)F(lOO) + (0.562487) F(110) + (0.277915) F(l11) 
+ (2.498654) F(321) - (0.442905) P(831) + (1.743576) F(210) 
- (0.230456) I;(21 1) - (0.354493) F(441) - (1.642709) F(741) 
+ (0.943639) F(41 l), 

a?‘) = (0.138472) P(100) + (0.351457) F(110) + (0.234507) F(111) 
+ (1.246640) P(321) - (0.230632) F(831) + (0.875489) F(210) 
+ (0.184069) F(211) - (0.0332286) F(441) - (0.341204) F(741) 
+ (0.679635) F(411) + (0.225170) F(221) + (0.214534) F(410), 

a:“’ = (O.l27178)F(lOO) + (0.110069)F(110) + (O.l74104)F(l11) 
- (0.0146192) F(321) + (0.550694) F(831) - (0.345529) F(210) 
+ (0.627955) F(211) - (0.0248196) F(441) + (1.066374) F(741) 
+ (0.310125) F(411) + (0.520343) F(221) + (0.258138) F(410) 
- (0.167635) F(732) + (0.352530) F(651), 

and 

al w = (O.l01332)F(lOO) + (0.191861)1;(110) + (0.109811)F(111) 
+ (0.326929) F(321) + (0.0450450) F(831) + (0.0395619) F(210) 
+ (0.342493) F(211) + (0.255739) F(441) + (0.783543) F(741) 
+ (0.603400) F(411) + (0.216117) F(221) + (0.605269) F(410) 
+ (0.0208283) F(732) - (0.0269079) F(651) - (0.378570) F(821) 
+ (0.308456) F(543), 

321 

w4 

(124 

We) 

Wf) 

uw 

(12h) 

(12i) 

where a:“) is the n-term approximation for a, and F(klm) is the value of the func- 
tion F(q) in the direction (k, I, m). The coefficients for aj(j > 1) for the above cases 
are available from the author. 

3. CONCLUSIONS 

It is found that Houston’s method is useful in evaluating integrals over the 
Brillouin zone. It reduces the integral over the sphere (solid angles 0 to 4~) to 
a sum of a few terms, when the integrand has the cubic symmetry. In cases where 
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the integrand has only partial symmetry, two sums must be performed, one over 
the operators of the cubic group and the other for evaluating a, . 

One specific case where this method has been used by the present author [l l] 
is the study of an interstitial in silicon. We encounter integrals over the Brillouin 
Zone of quantities that do not possess the cubic symmetry. The integrand is of 
the type 

Z = 
s 

g(k) d3k, (13) 

where 

g(PW = g(k) (134 

for /3% satisfying 

pk = k. WI 

The above method is used by symmetrizing the integrand, i.e., 

(14) 

(1% 

The sum over /3 can now be reduced to the operations of the factor group 
O&group of &i). The k integral can then be done by other techniques (Gaussian 
method, for example). 

It is noted that for certain values of 1, there are more than one independent 
combinations with the cubic symmetry. The first such case appears for I = 12. 
Thus to include properly all the terms of that order in our expansion (2), we must 
include all &‘s with the same 1. Consequently, the results derived by Betts et al. [2] 
and Betts [3] for 6, 9 and 15 terms are incorrect. We give the results for the correct 
number of terms, up to 16 term expansions. 

For those who would like to use either different directions than those suggested 
here or a larger number of terms in the expansion, the author will supply the 
computer program on request. 

The computer time in evaluating a typical integral with say 16 terms, is a few 
seconds on IBM-360-65. 
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